Lo que hemos aprendido gracias a seis personas que solo tienen medio cerebro

 

A veces nos imaginamos el cerebro como una especie de computadora. Como si se tratase de una máquina sofisticada, a cada región se le atribuye una función esencial para la vida, desde la memoria al lenguaje. Una avería en uno de esos módulos nos arrebataría esa habilidad. Y en ocasiones, es así. Sin embargo, algunos casos extremos muestran que el cerebro es una máquina más versátil de lo que se piensa con muchas facetas aún desconocidas.

Un ejemplo de estos casos excepcionales es el de personas que viven con casi total normalidad con solo medio cerebro. En algunos niños con casos muy graves de epilepsia, que tienen varios ataques al día y en los que el origen del daño está localizado, se aplica una cirugía radical que consiste en extirpar todo un hemisferio del cerebro. Después de la operación, los pacientes pierden la movilidad de la mano opuesta al hemisferio extraído y la misma mitad del campo visual. Sin embargo, mantienen la capacidad para caminar, razonar o memorizar, y aunque a veces pueden tener problemas con el habla la suelen recuperar.

Estudiar a estas personas excepcionales puede ayudar a entender cómo funciona el cerebro más allá de la antigua imagen que relaciona regiones y capacidades. Esto es lo que ha hecho un equipo del Instituto Tecnológico de California (Caltech) que publica sus resultados hoy en la revista Cell Reports. Los investigadores reclutaron a seis participantes en la veintena y la treintena a los que se les habría extraído uno de sus hemisferios cerebrales durante su infancia, entre los 3 meses y los once años de edad. Junto a otros seis voluntarios con ambos hemisferios como grupo para comparar, se les introdujo en una máquina de resonancia magnética funcional, que permite ver el interior del cerebro en acción. 

Dorit Kliemann, investigadora de Caltech y primera autora del artículo, destaca que los voluntarios con solo medio cerebro tenían “las capacidades lingüísticas intactas” y casi “se podía olvidar su dolencia cuando les conocías”. Eso hacía aún más sorprendente ver en el escáner que dentro de su cabeza solo había medio cerebro.

Los autores observaron las redes del cerebro relacionadas con el control de la visión, el movimiento, el razonamiento o las emociones. Antes de ver los resultados pensaban que las personas con un solo hemisferio tendrían conexiones más débiles entre estas zonas porque, en condiciones normales, muchas de esas redes requieren conexiones entre las dos mitades del cerebro. Sin embargo, la conectividad global parecía normal, e incluso vieron conexiones entre las distintas redes más fuertes que en los sujetos empleados como control que tenían los dos hemisferios intactos.

"El trabajo, con sus limitaciones, tiene interés en la línea de romper con la idea clásica de que distintas regiones del cerebro tienen funciones concretas. No tiene mucho sentido buscar la región del lenguaje, de la ira o la inteligencia. Cada vez más estudios nos enseñan que el cerebro es un conjunto que puede funcionar de muchas maneras”, comenta Sandra Jurado, investigadora del Instituto de Neurociencias de Alicante (UMH-CSIC). Esto se ve, por ejemplo, en personas a las que han extraído el hemisferio izquierdo, que se describe como el hemisferio del lenguaje. “Estas personas, aunque con dificultad, pueden recuperar la capacidad del lenguaje, así que el hemisferio derecho puede realizar esas funciones”, añade Jurado.

Además, Jurado menciona un detalle que los investigadores no destacan en su estudio porque la muestra de solo seis personas hace excesiva una generalización. “Lo que me parece más provocador de estos resultados es la idea de que en esos pocos pacientes las regiones del mismo hemisferio están más conectadas. Esa mayor conectividad indicaría que tienen mayor capacidad cognitiva, que tienen mayor capacidad de interacción social y realizan algunas tareas mejor que los que tienen los dos hemisferios”, señala.

Los autores del trabajo afirman que el conocimiento del modo en que el cerebro se reorganiza para compensar lesiones, incluso tan graves como las de estos niños epilépticos, puede ayudar a diseñar mejores estrategias para ayudar a personas con daños neurológicos graves.

FUENTE

 

**********************************************

 

Bacterias primitivas favorecieron las condiciones para la vida en la Tierra


Imágenes de microscopia de la bacteria Chlorobium ferrooxidans utilizada en el estudio y su lugar de procedencia: la bahía de Kabuno, al noreste del lago Kivu en la República Democrática del Congo. / UAB

Hace millones de años, durante el Precámbrico, la luz del Sol era tan tenue que la Tierra tendría que haber estado congelada, lo que dificultaría el desarrollo de la vida, pero algo calentó nuestro planeta. Ahora un estudio internacional ofrece una explicación a este misterio: antiguas bacterias formaron depósitos masivos de hierro y alimentaron a otros microorganismos que produjeron metano, un gas de efecto invernadero.

Un equipo internacional de científicos, liderado desde la Universidad de la Columbia Británica (UBC) y con participación de la Universidad Autónoma de Barcelona (UAB), acaba de revelar el papel clave que podrían haber desempeñado unos microorganismos del Arcaico –la etapa del Precámbrico comprendida entre hace 4.000 y 2.500 millones de años– en dos de los mayores misterios de la Tierra primigenia: la generación de acumulaciones masivas de hierro y el establecimiento de condiciones ambientales favorables para la vida bajo un sol tenue.

Para realizar el estudio, que publica esta semana la revista Science Advances, se han utilizado cultivos de bacterias modernas de la especie Chlorobium ferrooxidans recogidas en un lago africano rico en hierro llamado Kivu, concretamente en una bahía de la República Democrática del Congo.

Los resultados muestran que los antepasados de estos microorganismos pudieron ser claves para mantener el clima cálido primitivo de nuestro planeta y formar los yacimientos de hierro mineral más grandes del mundo: las formaciones laminadas de hierro (BIF, por sus siglas en inglés) en los fondos oceánicos hace miles de millones de años.

Las bacterias estudiadas tienen características químicas y físicas especiales que en completa ausencia de oxígeno les permiten convertir la energía de la luz solar en minerales de hierro oxidado y en biomasa celular, de tal manera que en última instancia provocan que otros microbios produzcan metano, el potente gas de efecto invernadero. 

"Usando técnicas geomicrobiológicas modernas, hemos hallado que estas bacterias poseen superficies que les permiten expulsar minerales de hierro, lo que hace posible que exporten estos minerales al fondo marino creando depósitos", señala la investigadora Katharine Thompson de la UBC, primera autora del trabajo.

"Separadas de sus productos minerales oxidados, estas bacterias pasan a alimentar a otros microorganismos productores de metano –explica–. Y ese metano es lo que probablemente mantuvo caliente la atmósfera de la Tierra, a pesar de que el sol era mucho menos luminoso que hoy día".


Imagen de microscopia del cultivo de C. phaeoferrooxidans (cepa KB01) durante su crecimiento en condiciones de fotoferrotrofia. / UAB

Resolución de un viejo enigma

El proceso de generación de las BIF ha sido un enigma hasta ahora, al no existir en estos depósitos registros fósiles de biomasa celular producida durante la oxidación del hierro.

“Ahora hemos demostrado que los antepasados de estas bacterias pudieron participar en la formación de las BIF y que el exceso de biomasa no depositado en ellas se habría depositado en los sedimentos costeros, formando pizarras ricas en materiales orgánicos y alimentando la metanogénesis microbiana, añade el coautor Marc Llirós, investigador del Departamento de Genética y Microbiología de la UAB.

El estudio supone una posible explicación a la paradoja del Sol joven y débil, originalmente reconocida por el astrónomo Carl Sagan. Esta paradoja apunta la existencia de océanos líquidos en la Tierra primitiva a pesar de que las estimaciones de la temperatura terrestre calculadas a partir de la luminosidad del Sol primitivo y la química atmosférica moderna implicarían que la Tierra debería haber estado completamente congelada.

Una Tierra congelada no habría soportado mucha vida. Una atmósfera rica en metano, vinculada a los depósitos masivos de hierro mineral y a la vida temprana fue propuesta inicialmente por el científico atmosférico de la Universidad de Michigan, James Walker, en 1987. Este nuevo estudio aporta una fuerte evidencia física para apoyar la teoría y revela que las interacciones a micro escala entre bacterias y minerales fueron probablemente la causa.

"El conocimiento fundamental que estamos adquiriendo de los estudios que utilizan herramientas y técnicas geomicrobiológicas modernas está transformando nuestra visión de la historia de la Tierra, así como la forma en que conocemos e interactuamos con el mundo que nos rodea hoy día", dice el autor principal del artículo, Sean Crowe, catedrático de investigación canadiense de geomicrobiología y profesor asociado de la UBC.

"Este conocimiento de los procesos químicos y físicos que están detrás de la interacción de las bacterias con su entorno puede ser utilizado, por ejemplo, para desarrollar y diseñar nuevos procesos para la recuperación de recursos, nuevos materiales de construcción, y aportar nuevos enfoques para el tratamiento de enfermedades”, adelanta el investigador.

FUENTE